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Abstract: Some tutorial notes on the three parameter logistic function and its relation to the Fermi 
function for simple modelling pandemics phenomena. The WHO data for the number of cases of 
infection with the COVID-19 virus for multiple countries as a function of time is fitted very well by a 
discretised logistic function. The rate of infection may be modelled by the derivative of the logistics 
function. More complex phenomena such as the appearance of fresh outburst of infection may be 
treated by using a superposition of logistic functions. The data for China and Italy are analysed. These 
notes are intended for undergraduates, graduate students who may find pleasure in the ability of applied 
mathematics and physics to shed light on the complexities of the real world.  
 
1.Introduction 
 
The coronavirus COVID-19 outbreak is now a pandemic. The World Health 
Organisation is collating and publishing the number of infections, the rate of infection 
and the number of deaths on a daily basis for each reporting country [1]. The disease 
was first reported in Wu-Han city in Hubei Province, China (January 2020) and the 
outbreak there now (28th March 2020) appears to be almost at a standstill. Figure 1  
plots the number of reported infections in China for 55 days after the 278 count in 
early January 2020. Figure 2 shows the rate of infections (increase in cases from 
previous day). The reported data is in the Appendix.  
 

 
 
Figure 1: Cumulative infections per day. Data mainly from Wubei area China [1]. 
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Figure 2: Rate of infection (new cases per day). Data mainly from Wubei area, China [1]. 
 
 
 
These real data plots are marred by a discontinuity at day 29 where the counting 
methodology was corrected. Such a feature is characteristic of a great deal of the 
WHO data where different countries have amended their counting/reporting 
methodology at different times.  
 
Disregarding the discontinuity, the number of infections in Figure 1a is seen to rise 
with time in an approximately exponential fashion, reaching a maximum infection 
rate and later levelling off.  
 
For comparison, Figures 3-4 show the first 37 days of the outbreak in Italy [1] 
displaying the number of infections and the rate of infection (number of new cases per 
day). Here the Italy data shows the exponential growth of the infections appears to be 
approaching an inflection point as suggested by a possible peak in the rate of 
infections.   
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Figure 3: Cumulative infections per day. Data from Italy [1]. 
 
 

 
 

Figure 4: Rate of infection (new cases per day). Data from Italy [1]. 
 

 
These two examples show the real world noisy discrete data that is facing 
epidemiologists in their attempts to predict the outcome of the pandemic and the 
consequences of counter-measures. The fully-developed spread and containment of 
the outbreak as shown in the China data is reminiscent of a “learning curve” and of 2.  
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various technological “laws” such as Moore’s Law [2] that describes the annual 
increase in the maximum number of transistors per integrated circuit due to advances 
in miniaturisation. With all “learning curves” we observe a sigmoidal shape that starts 
off slowly, rises to a maximum rate of learning and then levels off [3]. In section 2 we 
describe a simple three parameter model for this process in terms of the logistic 
function (introduced by Verhulst [4] in a study of population dynamics) or the related 
complementary Fermi function [5] widely used in semiconductor physics. The logistic 
function [6] is just one representation of the step function (actually a distribution) and 
we have used this recently in discussing the electrostatic self-energy in nanowire 
transistors [7]. In section 3 we show the application to the COVID-19 pandemic data. 
In the Appendix  we list some of data utilised. All the calculations were carried out in 
Mathematica®. 
 
2. The logistic function 
 
2.1 Basics 
 
For our purposes we write the logistic function (or sigmoid function [6]) as: 
 

  
f (t) =

cmax

1+ e−(t−tpeak )/T           (1a) 

       
  
=

cmaxe
(t−tpeak )/T

1+ e(t−tpeak )/T                    (1b) 

Where we might identify f(t) with either the number of infections or the number of 
deaths. The first derivative of f is the rate (of infection ) r(t): 
 

  
r(t) = f ' = df

dt
=

(cmax / T )e−(t−tpeak )/T

(1+ e−(t−tpeak )/T )2
      (2a) 

 
f satisfies the differential equation: 
 

  

d( f / cmax )
dt

=
( f / cmax ){1− f / cmax}

T
;boundary condition f (tpeak ) = cmax / 2   (2b) 

 
Equation 2b has a very simple interpretation: the probability of an individual being 
infected at time t is p(t) = f(t) /Cmax ; the probability of not being infected is therefore 
(1-p)=(1- f(t) /Cmax); so the rate of increase in infections dp/dt is set proportional to 
the conditional probability p(1-p) that someone will be infected if they are not already 
infected. 
 
Figure 5 illustrates the logistic function and its first derivative for the parameters 

  
c

max
= 100,t peak = 50,T = 5,τ = 3.46 . Figure 6 illustrates the first two derivatives of the 

logistic function and the exponential approximation for the same parameters.  
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2.2 Interpretation of the parameters:   cmax ,T and  

tpeak . 
 
(i) cmax is the asymptotic value of  f  for t >> tpeak. 
 
      For t << tpeak   :  f  is asymptotic to 0. 
 
(ii)   tpeak is the value of t for which df/dt is a maximum (the peak rate). 
 
(iii) f(tpeak)  = cmax/2        (3) 
 
(iv) For t << tpeak :  
 

  
f (t) =

cmaxe
(t−tpeak )/T

1+ e(t−tpeak )/T
(t−tpeak )/T<0
→ cmaxe

(t−tpeak )/T = fe      (4a) 

 
fe(t), Equation (4) is the exponential approximation. 
 
In terms of the natural logarithm (4a) may be written as 
 

  

Ln[ fe(t)]= Ln[cmax ]+ (t − tpeak ) / T = a + t / T

a = Ln[cmax ]− tpeak / T = constant
     (4b) 

 
Eqn (4b) is a linear equation in t with gradient 1/T. The rate dfe/dt is simply 
 

  
fe

' (t) =
fe(t)
T

         (5) 

 
(v) T: a decay/rise time is a measure of the time τ  for f  to double in value in the 
exponential approximation: 
 
  τ = Ln(2)T = 0.69314T        (6) 
 
(vi)  The discrete logistic function is defined for integer values of t as 
 

  fint (t) = Int[ f (t)],t ∈Integers       (7) 
 
(vii) The logistic function is the integral of the rate r(t) 

  
f (t) = dt '

−∞

t

∫ r(t ')         (8) 

It follows from (8) that the area under the rate curve gives cmax. 

  
cmax = dt '

−∞

∞

∫ r(t ')         (9) 
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Figure 5: The logistic function   f (t)  and its first derivative   f '(t) for the parameters 

                
  
c

max
= 100,t peak = 50,T = 5,τ = 3.46  

 

 
Figure 6: Plots of   f

' , f ''
, the first and second derivatives of the logistic function and   fe

'  the first 
                derivative of the exponential approximation for the parameters 
                

  
c

max
= 100,t peak = 50,T = 5,τ = 3.46  
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From (2) and (9) observe that if tpeak and/or T are altered , for example, flattening the 
 peak rate or advancing its occurrence, the total number of infections cmax is 
unchanged (see figure 7). 

 
Figure 7: The total number of infections cmax is unaffected by altering the values of tpeak and/or T. 

Blue curves: f(t), 5df/dt, cmax=100, tpeak=50, T=5; 
Green curves: f(t), 5df/dt, cmax=100, tpeak=50, T=15; 
Red curves: f(t), 5df/dt, cmax=100, tpeak=60, T=15. 

 
 
2.3 Relation to the Fermi-Dirac function 
 
The logistic function is related to the quantum statistical distribution function known 
as the Fermi-Dirac function ([5] well-known in physics, particularly condensed matter 
and semiconductor physics): 
 

  
fFD (ε;µ,β ,1) = 1

1+ eβ (ε−µ )         (10) 

 
Here ε  is the energy,µ  is the Fermi energy,   β = 1/ kBT  is the inverse of the product 
of Boltzmann’s constant and the absolute temperature T (we use β  so as not to be 
confused with the decay/rise time T!). In terms of the logistic function (written with 
the parameter dependence made explicit) we find: 
 

  
f (t;tpeak ,T ,cmax ) =

cmax

1+ e−(t−tpeak )/T       (11) 

 

  fFD (ε;µ,β ,1) = 1− f (ε;µ,1/ β ,1)       (12) 
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f (t;tpeak ,T ,cmax ) = cmax{1− fFD (t;tpeak ,1/ T ,1)}     (13) 

 
Thus the logistic function is essentially a complementary Fermi-Dirac function. 
 
2.4 Alternatives 
 
There are many generalisations to the logistic function, for example, all or some of 
the fixed parameters may be made to be time-dependent. The general qualitative form 
of the logistic function may be modelled by other 3-parameter functions, for example, 
in terms of the error function erf[x] we may define: 
 
    

  
ferror (t) =

cmax

2T π
dt 'e−(t−tpeak )2 /4T 2

−∞

t

∫ = cmax (1+ erf [(t − tpeak ) / 2T ])   (14) 

 

  
rerror (t) =

dferror (t)
dt

=
cmax

2T π
e−(t−tpeak )2 /4T 2

     (15) 

   
 
A comparison with the logistics function and its first derivative is shown in Figure 8 
for the same values of the three parameters. The results are similar but unlike the 
logistics curves the error function model does not possess an exponential growth 
region. 
 

 
 
Figure 8: Comparison of the logistics model (full lines) with the error function model (dashed lines) for 
the same parameters. Upper curves are for the direct functions. The lower two curves are the first 
derivatives. Scaled by a factor 5. The parameters used are:  cmax=100, tpeak=50, T=5. 
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3. Simple application to pandemics 
 
3.1 Extracting the parameters 
 
The three parameter logistic function may be easily fitted to the observed cumulative 
infection data provided the data extends beyond the peak in the infection rate. There 
are simple procedures for doing this especially using Mathematica® which deploys 
various fitting algorithms. However, in earlier stages of an epidemic or pandemic one 
may extract the decay/rise time T from the approximate exponential regime of the 
logistic function and indeed the infection rate (this easily performed by taking the 
logarithm of the infection as in equation 4b). The noisy nature of actual observations 
may make this very approximate but using the logarithm of the infection rate there are 
strong statistical methods for extracting the parameter T. The determination of the 
other parameters is very difficult in this regime. However, if an inflection in the 
cumulative infection is observed and/or a peak is observed in the infection rate then 
tpeak, the time of the peak infection rate may be estimated. It follows from equation (3) 
that the asymptotic cumulative infection cmax may estimated as: 
 

  cmax ≈ 2× (the observed cumulative infection  
           at the time of the observed peak in the infection rate).   (16) 
 
From these parameters one may estimate (within the limitations of the model) the 
subsequent cumulative infection and infection rate. A similar procedure holds for 
cumulative deaths/death rate due to the virus but the three parameters will not 
generally be the same. The cumulative deaths and the death rate are reasonably 
objectively based. The true cmax parameter for the cumulative infections may be 
estimated: (i) provided the morbidity data are combined with other epidemiological 
estimates; (ii) widespread testing provides an estimate of those with mild or no 
apparent symptoms.  
 
From the point of view of managing a pandemic crisis it is clear from Figure 7 that 
delaying and/or flattening the infection rate peak (by for instance social isolation or 
lockdown measures) is of benefit in spreading the hospitalisation load of seriously 
infected persons, but the asymptotic cumulative infection will remain the same as 
discussed in section 2.2. However, if more at risk patients can be hospitalised the 
lower the eventual number of deaths. Preventative measures such as social isolation, 
tracking, testing and lockdowns may temporarily reduce the true values of cmax for the 
cumulative infection but ultimately cmax will be some significant factor of the total 
population.  
 
3.2 Multiple or delayed outbreaks 
 
Suppose an epidemic (e.g in a single country) or pandemic involves delayed outbreak. 
For example, let a secondary outbreak occur after a simple outbreak is well 
developed, then we might postulate an additive model function with 3N parameters 
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ftotal (t;tpeak1...tpeakN ,T1...TN ,cmax1...cmax N ) = ftotal (t;tpeakI ,TI ,cmax I )

I=1

N

∑    (17) 

 
Figure 9 illustrates a hypothetical epidemic outbreak with two phases based on 
equation (17). 
 

 
Figure 9: A six parameter multiple logistics function with parameters: 
                cmax1= 80, tpeak1 = 20, T 1= 5;      cmax2 =20,  tpeak2 =100, T2 = 5  

 
A first outbreak peaks at 20 days is followed by a second outbreak peaking at 100 
days. 
 
 
 
3.3 Application to the COVID-19 
 
We now show the results of applying the above analysis to the WHO data for the 
spread of infections in the World, China and Italy.  
 
 
3.3.1 China data 
 
Figure 10 shows the WHO data ( blue dots ) for the cumulative infections and daily 
rate of infection(red dots) for  China with superposed plots of a logistic function f  for 
the cumulative infections and daily rate= of infections df/dt.  The logistic model 
parameters are 

 
cmax = 81500 , tpeak  = 20, T = 5 days.  Despite the previously mentioned 

counting change in the WHO data the logistic model shows a very good fit with an 
implied peak in the infection rate at 20 days. The level off predicted by the logistic 
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model is not supported by the reported data which is beginning to show small new 
outbreaks in China mainly due to imported cases according to WHO. 
 
 
 
 

 
 
Figure 10: Comparison of WHO data for China with a logistic model. 
Reported cumulative infections (blue dots) and daily rate of infection (red dots). 
Computed logistic model for cumulative infections (blue line) and daily rate of infection (red line). 
Logistic model parameters:  cmax

= 81500 , t
peak

 = 20, T = 5 days.  
 
 
 
3.3.2  Italy data 
 
Figure 11 shows the WHO data ( blue dots ) for the cumulative infections and daily 
rate of infection (red dots) for  Italy with superposed plots of a logistic function f  for 
the cumulative infections and daily rate of infections df/dt.  The logistic model 
parameters are 

 
cmax = 130000 , tpeak  = 35.5, T = 5.8 days.  The logistic model shows a 

very good fit with an implied peak in the infection rate at 35.5 days.  
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Figure 11: Comparison of WHO data for Italy with a logistic model. 
Reported cumulative infections (blue dots) and daily rate of infection (red dots). 
Computed logistic model for cumulative infections (blue line) and daily rate of infection (red line). 
Logistic model parameters: 

 
cmax = 130000 , tpeak  = 35.5, T = 5.8 days.  

 
 
 
 
 
3.3.3 Context: Global data 
 
To set the previous results in context Figures 12 -13 show the WHO reported data for 
the global infections of COVID-19. The spike in the reported data was discussed in 
section 1. The data follows the multiple logistic picture described in section 3.2 with a 
first large outbreak in China followed later by European countries and final the rest of 
the world.  
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Figure 12: Global cumulative infections as reported by WHO. The jump at day 28 is due to a large 
discrepancy caused by a change in the counting methodology in China.  
 

 
 
Figure 13: Global daily rate of infections as reported by WHO. The spike at day 28 is due to a large 
discrepancy caused by a change in the counting methodology in China.  
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4. Conclusions 
 
The logistic function is a useful modelling tool with a small number of parameters 
that captures the statistical forms of a simple epidemic: in the present case the 
COVID-19 outbreak. By using superpositions of logistic functions it may be feasible 
to model global pandemics where multiple staggered outbreaks occur. The simple 
model gives a good fit to the data reported for China and Italy. The procedure 
outlined here is basically simple curve fitting but taking note of the physical origin of 
the parameters and noting the exponential phase of simple epidemics. This must be 
regarded as only an elementary step in understanding the spread of infections and 
their prediction. We refer to the extensive epidemiological literature elsewhere to see 
the full scope and complexity of this important field. The code for implementing the 
results presented here will be made available separately. 
 
Note: the author is not an epidemiologist but has a background in theoretical physics. 
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 Appendix: Extracts from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports 
 

WHO 
Report 
No. 

Date 
 
 

Global  
Cumulative 
Infections 

China 
Cumulative 
Infections 

China 
Deaths 
 

Italy 
Cumulative 
Infections 

Italy 
Death 
 

 
Italy 
infection  
rate 

2   309     
3 23/01/20 581 571     
4  846 830     
5  1320 1297     
6  2014 1985     
7  2798 2741     
8  4598 4537 106    
9  6065 5597 132    

10  7818 7736 170    
11  9826 9720 213    
12 01/02/20 11953 11821 259    
13  14557 14411 304    
14  17391 17238 361    
15  20630 20471 425    
16  24554 24363 491    
17  28276 28060 564    
18  31481 31211 637    
19  34886 34598 723    
20  37558 37251 812    
21  40554 40235 909    
22  43103 42708 1017    
23  45171 44730 1114    
24  46997 46550 1368    
25  49053 48548 1381    
26  50580 50054 1524    
27  51857 51174 1666    
28  71429 70635 1772    
29  73332 72528 1870    
30 19/02/20 75204 74280 2006 3 0  
31  75748 74675 2121 3 0 0 
32  76769 75569 2239 3 0 0 
33  77794 76392 2348 9 0 6 
34  78811 77042 2445 76 2 67 
35  79331 77262 2595 124 2 48 
36  80239 77780 2666 229 6 105 
37  81109 78191 2718 322 11 93 
38  82294 78630 2747 400 12 78 
39  83652 78961 2791 650 17 250 
40  85403 79394 2838 888 21 238 
41 01/03/02 87137 79968 2873 1128 29 240 
42  88948 80174 2915 1689 35 561 
43  90869 80304 2946 2036 52 347 
44  93091 80422 2984 2502 80 466 
45  95324 80565 3015 3089 107 587 
46  98192 80711 3045 3858 148 769 
47  101927 80813 3073 4636 197 778 
48  105586 80859 3100 5883 234 1247 
49  109577 80904 3123 7375 366 1492 
50  113702 80924 3140 9172 463 1797 
51  118319 80955 3262 10149 631 977 
52 12/03/20 125260 80981 3173 12462 827 2313 
53  132758 80991 3180 15113 1016 2651 
54  142534 81021 3194 17660 1268 2547 
55  153517 81048 3204 21157 1441 3497 
56  167515 81077 3218 24747 1809 3590 
57  179111 81116 3231 27980 2503 3233 
58  191127 81116 3231 31506 2503 3526 
59  209839 81174 3242 35713 2978 4207 
60  234073 81300 3253 41035 3407 5322 
61  266073 81416 3261 47021 4032 5986 
62  292142 81498 3267 53578 4827 6557 
63  332930 81601 3276 59138 5476 5560 
64 24/03/20 372757 81747 3283 63927 6077 4789 
65  414179 81848 3287 69176 6820 5249 
66  462684 81961 3293 74386 7505 5210 
67  509164 82078 3298 80539 81675 6153 
68 28/03/20 571678 82230 3301 86498 9136 5959 
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